Quantitative Analysis

The Very Basics

David Chiang October 2023

Wikipedia Definitions

- Quantitative analysis the use of <u>mathematical</u> and <u>statistical methods</u> in <u>finance</u> and <u>investment management</u>
- Return (rate of return) a profit on an investment over a period of time
- Volatility measure of the amount of variation of a set of values
- Skewness measure of the asymmetry of the probability distribution
- Kurtosis measure of the "tailedness" of the probability distribution of a real-valued random variable
- Sharpe Ratio measure of the performance of an investment compared to a <u>risk-free asset</u>, after adjusting for its <u>risk</u>
- Back Testing testing a predictive model on historical data

Can Quantitative Analyses Predict the Future

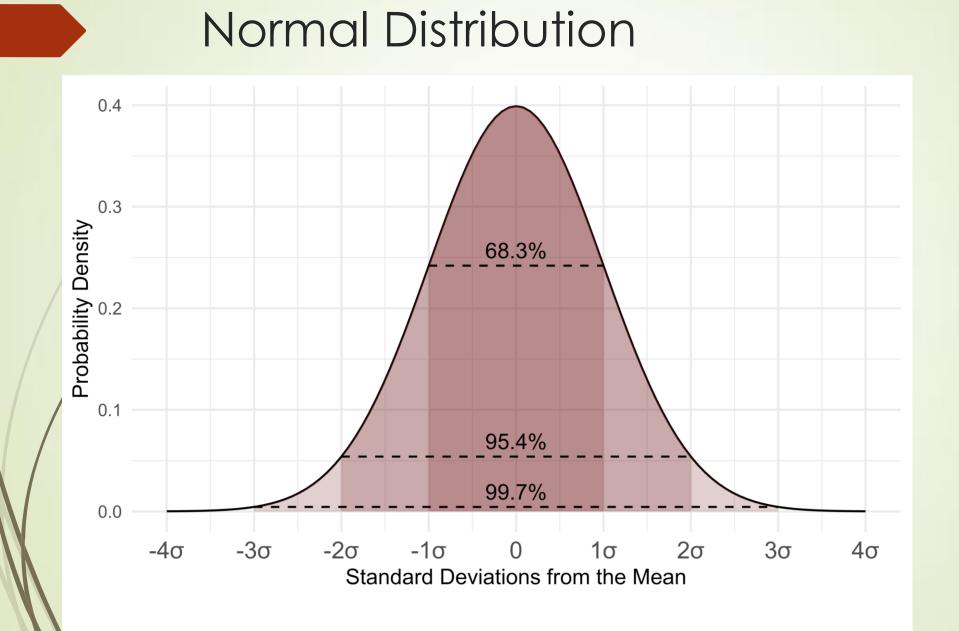
Yes

Quantitative analyses provide the parameters that specify the statistical behavior of future financial data

No

Financial data are non-stationary (statistics change over time)

Returns


- Returns over a time period
 - \succ Discrete = $(p_n p_{n-1}) / p_{n-1}$
 - > Continuous = $log(p_n / p_{n-1})$
- Approximate historical returns using a normal distribution
- Expected return is the average of the distribution
 - E.g. Annual return the expected return over a year
 - May be calculated by taking average of many years or
 - Annualize average monthly returns

** SW used to demonstrate returns is derived from Reproducible Finance with R by Jonathan K. Regenstein

Volatility (Risk)

- Standard deviation is typically used for volatility or risk
- Standard deviation
 - > Denoted by σ
 - Calculated over a period of time (e.g. Per Annum, quarterly, monthly, etc.)
- Another commonly used measure for risk is drawdown
 - Largest reduction from highest value to lowest
 - Normally used in back testing

** SW used to calculate standard deviations is derived from Reproducible Finance with R by Jonathan K. Regenstein

1-2 σ (95.4%-68.3%)/2 = 27.1%/2 = 13.55% **2-3 σ** (99.7% -95.4%)/2 = 4.3%/2 = 2.15%

What Does 10% Volatility Mean?

- 10% per annum ~ 0.63% per day (AAPL volatility)
 - .1/SQRT(250)=.1/15.81=.0063
- Number of days per year of 1-2 sd drop [-.63% to -1.26%]
 - 250 * (95-68)/2=250 * 13.5%= 34 trading days (or 1.5 months)
- Probability of having 3 down days of 1 sd or more (ie down 1.8% or more)
 - > (13.55% + 2.15% + 0.15%)**3= 0.4%
 - > The probability is in fact a lot higher

Skewness and Kurtosis

- Return distributions are typically skewed to the high or low side
- Return distributions are "Fat tailed" a lot more occurrences at the extreme values than normal distribution

Trade-off Between Risk and Reward

- What is better?
 - > Higher return with high risk
 - Lower return with lower risk
- How does quantitative analysis address this question?

Sharpe Ratio

Introduced by Nobel Laureate William Sharpe

Sharpe Ratio = $Average(R - R_f)/\sigma$

Rf is the risk free rate; one typically uses US treasury rate

Provides a metric to evaluate assets with different return and risk profiles

** SW used to demonstrate Sharpe Ratio is derived from Reproducible Finance with R by Jonathan K. Regenstein

Optimal Portfolio

- The optimal portfolio of assets is the one having the set of weights that minimizes the portfolio standard deviation (Mean-Variance Optimization)
- Mathematics to find the "optimal" weights is messy
- For a portfolio of two assets, one can find the optimal weights by brute force

Back Testing

- Assume that you have an investment strategy
 - How much return should you expect in the future?
 - How did it perform in the past?
- Back testing provides
 - The return you would have received had you implemented the strategy
 - > The risks you would have suffered in the process
- No guarantee that good historical performance will repeat, but definitely better than
 - Irrational exuberance
 - Excessive pessimism

That's all folks Thank you for attending Questions?