Quantitative Analysis

The Very Basics

David Chiang
October 2023

Wikipedia Definitions

- Quantitative analysis - the use of mathematical and statistical methods in finance and investment management
- Return (rate of return) - a profit on an investment over a period of time
- Volatility - measure of the amount of variation of a set of values
- Skewness - measure of the asymmetry of the probability distribution
- Kurtosis - measure of the "tailedness" of the probability distribution of a real-valued random variable
Sharpe Ratio - measure of the performance of an investment compared to a risk-free asset, after adjusting for its risk
- Back Testing - testing a predictive model on historical data

Can Quantitative Analyses Predict the Future

- Yes
> Quantitative analyses provide the parameters that specify the statistical behavior of future financial data
- No
> Financial data are non-stationary (statistics change over time)

Returns

- Returns over a time period
$>$ Discrete $=\left(p_{n}-p_{n-1}\right) / p_{n-1}$
\Rightarrow Continuous $=\log \left(p_{n} / p_{n-1}\right)$
- Approximate historical returns using a normal distribution
- Expected return is the average of the distribution
- E.g. Annual return the expected return over a year
> May be calculated by taking average of many years or
> Annualize average monthly returns
** SW used to demonstrate returns is derived from Reproducible Finance with R by Jonathan K. Regenstein

Volatility (Risk)

- Standard deviation is typically used for volatility or risk
- Standard deviation
> Denoted by σ
> Calculated over a period of time (e.g. Per Annum, quarterly, monthly, etc.)
- Another commonly used measure for risk is drawdown
> Largest reduction from highest value to lowest
> Normally used in back testing

Normal Distribution

What Does 10% Volatility Mean?

- 10% per annum $\sim 0.63 \%$ per day (AAPL volatility)
$>.1 / \operatorname{SQRT}(250)=.1 / 15.81=.0063$
- Number of days per year of 1-2 sd drop [-.63\% to -1.26\%]
> 250 * (95-68)/2=250 * 13.5\%=34 trading days (or 1.5 months)
- Probability of having 3 down days of 1 sd or more (ie down 1.8% or more)
$>(13.55 \%+2.15 \%+0.15 \%)^{* * 3}=0.4 \%$
> The probability is in fact a lot higher

Skewness and Kurtosis

- Return distributions are typically skewed to the high or low side
- Return distributions are "Fat tailed" - a lot more occurrences at the extreme values than normal distribution
** SW used to demonstrate skewness and Kurtosis is derived from Reproducible Finance with R by Jonathan K. Regenstein

Trade-off Between Risk and Reward

- What is better?
> Higher return with high risk
> Lower return with lower risk
- How does quantitative analysis address this question?

Sharpe Ratio

- Introduced by Nobel Laureate William Sharpe

Sharpe Ratio = Average $\left(\mathrm{R}-\mathrm{R}_{\mathrm{f}}\right) / \sigma$

Rf is the risk free rate; one typically uses US treasury rate

- Provides a metric to evaluate assets with different return and risk profiles

Optimal Portfolio

- The optimal portfolio of assets is the one having the set of weights that minimizes the portfolio standard deviation (Mean-Variance Optimization)
- Mathematics to find the "optimal" weights is messy
- For a portfolio of two assets, one can find the optimal weights by brute force

Back Testing

- Assume that you have an investment strategy
> How much return should you expect in the future?
> How did it perform in the past?
- Back testing provides
> The return you would have received had you implemented the strategy
> The risks you would have suffered in the process
- No guarantee that good historical performance will repeat, but definitely better than
> Irrational exuberance
> Excessive pessimism

That's all folks

 Thank you for attending Questions?